
1	of	8

jQuery	—	New	Wave	JavaScript

	(https://app.fossa.io/projects/git%2Bgithub.com%2Fjquery%2Fjquery?ref=badge_shield)

	(https://gitter.im/jquery/jquery?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge)

Contribution	Guides
In the spirit of open source software development, jQuery always encourages community
code contribution. To help you get started and before you jump into writing code, be sure to
read these important contribution guidelines thoroughly:

1. Getting Involved	(https://contribute.jquery.org/)

2. Core Style Guide	(https://contribute.jquery.org/style-guide/js/)

3. Writing Code for jQuery Foundation Projects	(https://contribute.jquery.org/code/)

Environments	in	which	to	use	jQuery
Browser support	(https://jquery.com/browser-support/)

jQuery also supports Node, browser extensions, and other non-browser environments.

What	you	need	to	build	your	own	jQuery
In order to build jQuery, you need to have the latest Node.js/npm and git 1.7 or later. Earlier
versions might work, but are not supported.

For Windows, you have to download and install git	(https://git-scm.com/downloads)	and Node.js
(https://nodejs.org/en/download/)	.

OS X users should install Homebrew	(http://brew.sh/)	. Once Homebrew is installed, run brew
install	git to install git, and brew	install	node to install Node.js.

Linux/BSD users should use their appropriate package managers to install git and Node.js, or
build from source if you swing that way. Easy-peasy.

How	to	build	your	own	jQuery
Clone a copy of the main jQuery git repo by running:

git	clone	git://github.com/jquery/jquery.git



2	of	8

Enter the jquery directory and run the build script:

The built version of jQuery will be put in the dist/ subdirectory, along with the minified copy
and associated map file.

If you want to create custom build or help with jQuery development, it would be better to
install grunt command line interface	(https://github.com/gruntjs/grunt-cli)	as a global package:

Make sure you have grunt installed by testing:

Now by running the grunt command, in the jquery directory, you can build a full version of
jQuery, just like with an npm	run	build command:

There are many other tasks available for jQuery Core:

Modules

Special builds can be created that exclude subsets of jQuery functionality. This allows for
smaller custom builds when the builder is certain that those parts of jQuery are not being
used. For example, an app that only used JSONP for $.ajax() and did not need to calculate
offsets or positions of elements could exclude the offset and ajax/xhr modules.

Any module may be excluded except for core, and selector. To exclude a module, pass its path
relative to the src folder (without the .js extension).

Some example modules that can be excluded are:

ajax: All AJAX functionality: $.ajax(), $.get(), $.post(), $.ajaxSetup(), .load(),
transports, and ajax event shorthands such as .ajaxStart().

ajax/xhr: The XMLHTTPRequest AJAX transport only.

ajax/script: The <script> AJAX transport only; used to retrieve scripts.

ajax/jsonp: The JSONP AJAX transport only; depends on the ajax/script transport.

css: The .css() method. Also removes all modules depending on css (including
effects, dimensions, and offset).

css/showHide: Non-animated .show(), .hide() and .toggle(); can be excluded if you
use classes or explicit .css() calls to set the display property. Also removes the effects
module.

cd	jquery	&&&& 	npm	run	build

npm	install	-- g	grunt-- cli

grunt	-- V

grunt

grunt	-- help



3	of	8

deprecated: Methods documented as deprecated but not yet removed.

dimensions: The .width() and .height() methods, including inner- and outer-
variations.

effects: The .animate() method and its shorthands such as .slideUp() or
.hide("slow").

event: The .on() and .off() methods and all event functionality. Also removes
event/alias.

event/alias: All event attaching/triggering shorthands like .click() or .mouseover().

event/focusin: Cross-browser support for the focusin and focusout events.

event/trigger: The .trigger() and .triggerHandler() methods. Used by alias and
focusin modules.

offset: The .offset(), .position(), .offsetParent(), .scrollLeft(), and .scrollTop()
methods.

wrap: The .wrap(), .wrapAll(), .wrapInner(), and .unwrap() methods.

core/ready: Exclude the ready module if you place your scripts at the end of the body.
Any ready callbacks bound with jQuery() will simply be called immediately. However,
jQuery(document).ready() will not be a function and .on("ready",	...) or similar will
not be triggered.

deferred: Exclude jQuery.Deferred. This also removes jQuery.Callbacks. Note that
modules that depend on jQuery.Deferred(AJAX, effects, core/ready) will not be removed
and will still expect jQuery.Deferred to be there. Include your own jQuery.Deferred
implementation or exclude those modules as well (grunt	custom:-deferred,-ajax,-
effects,-core/ready).

exports/global: Exclude the attachment of global jQuery variables ($ and jQuery) to the
window.

exports/amd: Exclude the AMD definition.

As a special case, you may also replace Sizzle by using a special flag grunt	custom:-sizzle.

sizzle: The Sizzle selector engine. When this module is excluded, it is replaced by a
rudimentary selector engine based on the browser's querySelectorAll method that
does not support jQuery selector extensions or enhanced semantics. See the selector-
native.js	(https://github.com/jquery/jquery/blob/master/src/selector-native.js)	file for details.

Note: Excluding Sizzle will also exclude all jQuery selector extensions (such as
effects/animatedSelector and css/hiddenVisibleSelectors).

The build process shows a message for each dependent module it excludes or includes.

AMD	name

As an option, you can set the module name for jQuery's AMD definition. By default, it is set to
"jquery", which plays nicely with plugins and third-party libraries, but there may be cases
where you'd like to change this. Simply set the "amd" option:

grunt	custom	--amd== "custom-name"



4	of	8

Or, to define anonymously, set the name to an empty string.

Custom	Build	Examples

To create a custom build, first check out the version:

Where VERSION is the version you want to customize. Then, make sure all Node
dependencies are installed:

Create the custom build using the grunt	custom option, listing the modules to be excluded.

Exclude all ajax functionality:

Excluding css removes modules depending on CSS: effects, offset, dimensions.

Exclude a bunch of modules:

For questions or requests regarding custom builds, please start a thread on the Developing
jQuery Core	(https://forum.jquery.com/developing-jquery-core)	section of the forum. Due to the
combinatorics and custom nature of these builds, they are not regularly tested in jQuery's unit
test process. The non-Sizzle selector engine currently does not pass unit tests because it is
missing too much essential functionality.

Running	the	Unit	Tests
Make sure you have the necessary dependencies:

Start grunt	watch or npm	start to auto-build jQuery as you work:

Run the unit tests with a local server that supports PHP. Ensure that you run the site from the
root directory, not the "test" directory. No database is required. Pre-configured php local

grunt	custom	--amd== ""

git	pull;	git	checkout	VERSION

npm	install

grunt	custom:-ajax

grunt	custom:-css

grunt	custom:-ajax,-css,-deprecated,-dimensions,-effects,-event/alias,-offset,-wrap

npm	install

grunt	watch



5	of	8

servers are available for Windows and Mac. Here are some options:

Windows: WAMP download	(http://www.wampserver.com/en/)

Mac: MAMP download	(https://www.mamp.info/en/downloads/)

Linux: Setting up LAMP	(https://www.linux.com/learn/tutorials/288158-easy-lamp-server-installation)

Mongoose (most platforms)	(https://code.google.com/p/mongoose/)

Building	to	a	different	directory
To copy the built jQuery files from /dist to another directory:

With this example, the output files would be:

To add a permanent copy destination, create a file in dist/ called ".destination.json". Inside
the file, paste and customize the following:

Additionally, both methods can be combined.

Essential	Git
As the source code is handled by the Git version control system, it's useful to know some
features used.

Cleaning

If you want to purge your working directory back to the status of upstream, the following
commands can be used (remember everything you've worked on is gone after these):

Rebasing

For feature/topic branches, you should always use the --rebase flag to git	pull, or if you are
usually handling many temporary "to be in a github pull request" branches, run the following
to automate this:

grunt	&&&& 	grunt	dist:/path/to/special/location/

/path/to/special/location/jquery.js

/path/to/special/location/jquery.min.js


{

		"/Absolute/path/to/other/destination":	truetrue

}



git	reset	--hard	upstream/master

git	clean	-fdx




6	of	8

(see man	git-config for more information)

Handling	merge	conflicts

If you're getting merge conflicts when merging, instead of editing the conflicted files
manually, you can use the feature git	mergetool. Even though the default tool xxdiff looks
awful/old, it's rather useful.

The following are some commands that can be used there:

Ctrl	+	Alt	+	M - automerge as much as possible

b - jump to next merge conflict

s - change the order of the conflicted lines

u - undo a merge

left	mouse	button - mark a block to be the winner

middle	mouse	button - mark a line to be the winner

Ctrl	+	S - save

Ctrl	+	Q - quit

QUnit	Reference

Test	methods

Note: QUnit's eventual addition of an argument to stop/start is ignored in this test suite so
that start and stop can be passed as callbacks without worrying about their parameters.

Test	assertions

Test	Suite	Convenience	Methods	Reference	(See

git	config	branch.autosetuprebase	local

expect(	numAssertions	);

stop();

start();



ok(	value,	[message]	);

equal(	actual,	expected,	[message]	);

notEqual(	actual,	expected,	[message]	);

deepEqual(	actual,	expected,	[message]	);

notDeepEqual(	actual,	expected,	[message]	);

strictEqual(	actual,	expected,	[message]	);

notStrictEqual(	actual,	expected,	[message]	);

throwsthrows (	block,	[expected],	[message]	);





7	of	8

test/data/testinit.js)

Returns	an	array	of	elements	with	the	given	IDs

Example:

Asserts	that	a	selection	matches	the	given	IDs

Example:

Fires	a	native	DOM	event	without	going	through	jQuery

Example:

Add	random	number	to	url	to	stop	caching

Example:

Run	tests	in	an	iframe

Some tests may require a document other than the standard test fixture, and these can be run

q(	...	);

q("main",	"foo",	"bar");

=>=> 	[	div#main,	span#foo,	input#bar	]



t(	testName,	selector,	[	"array",	"of",	"ids"	]	);

t("Check	for	something",	"//[a]",	["foo",	"bar"]);

fireNative(	node,	eventType	)

fireNative(	jQuery("#elem")[0],	"click"	);

url(	"some/url"	);

url("index.html");

=>=> 	"data/index.html?10538358428943"

url("mock.php?foo=bar");

=>=> 	"data/mock.php?foo=bar&10538358345554"





8	of	8

in a separate iframe. The actual test code and assertions remain in jQuery's main test files;
only the minimal test fixture markup and setup code should be placed in the iframe file.

This loads a page, constructing a url with fileName "./data/"	+	fileName. The iframed page
determines when the callback occurs in the test by including the "/test/data/iframeTest.js"
script and calling startIframeTest(	[	additional	args	]	) when appropriate. Often this will
be after either document ready or window.onload fires.

The testCallback receives the QUnit assert object created by testIframe for this test, followed
by the global jQuery, window, and document from the iframe. If the iframe code passes any
arguments to startIframeTest, they follow the document argument.

Questions?
If you have any questions, please feel free to ask on the Developing jQuery Core forum
(https://forum.jquery.com/developing-jquery-core)	or in #jquery on irc.freenode.net.

testIframe(	testName,	fileName,

		functionfunction 	testCallback(

						assert,	jQuery,	window,	document,

						[	additional	args	]	)	{

				...

		}	);




